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Part I

Which Quantity to be Used?
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Surrogate Endpoint (SE)
Surrogate endpoint is intended to replace clinical 
outcome for any therapy

Reason why validating surrogate endpoint is not feasible

Surrogate endpoint needs to be validated

To evaluate the surrogate endpoint, large confirmatory 
clinical trials need to be conducted for both surrogate and 
clinical endpoints

If large confirmatory clinical trials are conducted, the drug 
efficacy should have been established. 

No need for surrogate endpoint for this drug

The conclusion from this drug cannot be extrapolated to 
other drugs because different drugs may work through 
different pathways



BASS XIV Nov 5, 2007 5

Surrogate Marker (SM)
Surrogate marker for a drug is a marker which could be 
used to predict the drug’s efficacy or safety
Example of the usefulness of a surrogate marker

Blood glucose is a surrogate marker for Hemoglobin A1c
A type-2 diabetes patient took a diabetic drug
Clinical studies showed that drug should have an effect on 
glucose a few hours after taking the drug
The patient measured the glucose several times during the 
first few days of taking the drug
If there is not much improvement on glucose, the drug 
probably does not work for this patient and this patient 
should switch to a different treatment
If there is a clear improvement on glucose, the drug probably 
works for this patient and the patient should continue taking 
the drug
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Intermediate Endpoint (IE)
Definition

A biomarker associated with or correlated with the 
clinical endpoint

Whether it is a surrogate marker or surrogate 
endpoint is unknown

Examples of intermediate endpoint for fracture
Bone mineral densities

Bone biomarkers

Bone images

Clinical symptoms (e.g., pain)
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Relationship Between SE, SM and IE 

SE? SM IE

Question: An IE is an SM?
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Statistical Validation
Validation Quantities

Proportion of treatment effect (PTE)
Likelihood reduction factor (LRF)
Proportion of information gain (PIG)

Notation
S = surrogate marker or intermediate marker
Z = treatment group

0 = placebo; 
1 = active treatment

T = clinical outcome

One of Prentice’s key criteria (Prentice, 1989)
The distribution of T given S and Z is the same as the 
distribution of T given S 
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Example

S = Intermediate Marker 
Bone mineral density

Z = Treatment group
Placebo or raloxifene

T = clinical outcome
Vertebral fracture

Treatment BMD Vertebral Fracture
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PTE and ERO

Fit two models

Model 1: T ~ a0+azZ

Model 2: T ~ b0+bzZ+bx S

Proportion of treatment effect (Freedman et al., 1992)

Excessive relative odds (ERO) (Sarkar and Qu, 2007) 
for logistic regression

zz ba 11PTE −−=

( )
)exp(1

)exp()exp(,
z

zz
zz a

ababERO
−

−
=



BASS XIV Nov 5, 2007 11

Drawbacks of PTE and ERO

Not bounded by [0,1]

Large variances for the two 
quantities

Could be problematic when there is 
a strong colinearity between S and Z

For good surrogate markers, this 
strong colinearity may be expected

T ~ b0+bzZ+bx S
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Likelihood Reduction Factor (LRF)

LRF(Z,S:Z) = 1 – exp{-LRT(Z,S:Z)/n}

where LRT(Z,S:Z) is the likelihood ratio test 
statistic from models

T ~ a0 + aZZ

T ~ b0 + bZZ + bsS

The LRF is bounded by [0,1], but the 
maximum possible value may not reach 1

LRF (Alonso et al, 2004)
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LRF Adjusted (LRFa)

LRFa(Z,S:Z) = [LRFmax]-1 LRF (Z,S:Z)

where LRFmax is the LRF value for the best-possible 
fitted model vs. the worst fitted model (e.g., the 
model only including intercept)

The estimated LRFmax could be estimated from the 
fulll model compared to the simplest model

LRFmax=LRF(Z,S:1)



BASS XIV Nov 5, 2007 14

Is LRF (LRFa) a Good Measure? 

LRF (LRFa) is NOT a good measure for the 
treatment effect by IE

LRFa does not reflect the association 
between S and T

LRFa rather reflects the association 
between S and T after adjusting for Z

T ~ a0 + aZZ

T ~ b0 + bZZ + bsS
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An Artificial Example

The above model meets Prentice’s 
criteria regardless of the variance of e
and u.
However, LRFa approaches to 0 as the 
variance of u approaches 0.

T = c0 + csS + e

S = d0 + dZZ + u
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A Different Approach

Instead of comparing
T ~ a0 + aZZ

T ~ b0 + bZZ + bsS
We compare

T ~ c0 + cSS

T ~ b0 + bZZ + bsS

LRFa(Z,S:Z)
Alonso, et al

New Quantity
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Proportion of Information Gain (PIG)

Proportion of Information Gain (PIG) (Qu and Case, 
2007)

PIG = LRT(S:1)/LRT(Z,S:1)

LRT(S:1) = Likelihood Ratio Test statistic comparing 
models

T ~ d0

T ~ c0 + cSS

LRT(Z,S:1) = Likelihood Ratio Test statistic comparing 
models

T ~ d0

T ~ b0 + bZZ + bsS
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Kullback-Leibler (K-L) Information

PIG is closed related to K-L Information 
gain (KLIG)

The K-L information gain is LRT/(2n)

Therefore, 

PIG = KLIG(S:1)/KLIG(Z,S:1)
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Simulation: Setting #1

Prentice’s criteria are met
Compare the performance of PTE, LRFa and 
PIG for various s2

Sample size = 1,000 (n=500 per group)
1,000 simulation samples

logit(Pr(T=1) | S, Z) = -S

S = Z + u,  u~N(0,s2)
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Simulation Results for Setting #1

0.99 (0.01)

0.96 (0.02)

0.82 (0.05)

0.06 (0.06)

0.02 (0.02)

LRFa

1.00 (0.00)1.28 (1.57)4.00

1.00 (0.00)1.06 (0.34)2.00

1.00 (0.01)1.02 (0.20)1.00

0.98 (0.02)1.04 (0.70)0.10

0.98 (0.02)1.38 (6.66)0.01

PIGPTEs
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Simulation: Setting #2

Compare the performance of PTE, LRFa, and PIG 
for various (γs, γz)

Sample size = 1,000 (n=500 per group)

1,000 simulation samples

logit(Pr(T=1) | S, Z) = γsS + γzZ

S = Z + u,  u~N(0,1)
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Simulation Results for Setting #2

0.02 (0.03)

0.16 (0.09)

0.51 (0.10)

0.74 (0.07)

0.83 (0.05)

LRFa

0.21 (0.11)0.00 (0.07)(1.0, 0.0)

0.55 (0.12)0.20 (0.07)(0.8, 0.2)

0.88 (0.06)0.48 (0.10)(0.5, 0.5)

0.98 (0.02)0.79 (0.16)(0.2, 0.8)

1.00 (0.01)1.03 (0.21)(0.0, 1.0)

PIGPTE(γz, γs)
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Clinical Example

Data from the Multiple Outcomes of Raloxifene Evaluation 
(MORE) study

Duration of the study: 3 years

Treatments: placebo or raloxifene

Clinical outcome: prevalent vertebral fracture in 3 years

A total of 2230 subjects with measurement for 

vertebral fracture

bone mineral density (BMD)

bone biomarkers

Problem of interest: see whether the short-term change in 
femoral neck BMD and bone markers are acceptable 
surrogates for the vertebral fracture reduction by raloxifene
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Notation

Z = Treatment group
0 for placebo

1 for raloxifene

T = New vertebral fracture

S = Vector for change in 
femoral neck BMD at 1 year

CTX averaged at 6 months and 1 year 

osteocalcin averaged at 6 months and 1 year

BSALP average at 6 months and 1 year

CTX = Urinary type I collagen C-telopeptide excretion, corrected for urinary 
creatinine excretion

BSALP = Bone-specific alkaline phosphatase
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Results from the Clinical Example

(0.13, 0.95)0.230.46LRFa

(0.36, 0.999)0.180.79PIG

(-0.03, 1.38)7.390.31PTE

95% CI*Standard 
ErrorEstimateMethod

* 95% confidence interval was calculated by bootstrap method
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Summary

Theory and simulation show PIG better 
quantifies the IE compared to PTE and 
LRF
In the ideal cases where IE is a 
surrogate endpoint, PIG but not LRF 
correctly reflects the situation
The standard error in the estimated 
PTE is generally large and limits its 
use in practice
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Discussion

This research focuses on a single study, 
but it could be potentially extended to 
multiple studies or meta-analysis
No threshold value of PIG is given above 
which the IE could be considered a 
surrogate
Research needs to be done to evaluate 
the performance of PIG and other 
methods when the analysis models and 
data-generating models do not match
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Part II

The Effect of Measurement Error 
on Evaluation of Surrogate 

Markers
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Linear Measurement Error Models

Y = β0 + β1 X + e, e ~ N(0, σe
2)

W = X + u, u ~ N(0, σu
2)

If no the measurement error, we regress Y on X

b1,no ME = [Var(X)]-1 Cov(X,Y)  −> (σx
2 )-1σxy

Ignoring the measurement error, we regress Y on W

b1,naive = [Var(W)]-1 Cov(W,Y)  −> (σx
2 +σu

2 )-1σxy

Therefore, the naïve estimator is biased

Reliability ratio: (σx
2 +σu

2 )-1 σx
2 (Fuller, 1987)
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Effect of Measurement Error on 
Linear Regression Coefficients

-2 -1 0 1 2 3

-2
-1

0
1

2
3

4

X or W

Y

(X,Y)
(W,Y)
Regression: Y on X
Regression: Y on W
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How to Correct the Bias?

Linear or polynomial regression
Methods of moments (Fuller, 1987)
Regression calibration (Carroll, et al. 2006)

Logistic regression
Regression calibration (Carroll, et al. 2006)

General nonlinear model
Simulation extrapolation – an approximate 
method (Cook and Stefanski, 1994)
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An Example
MORE Study

Is change in femoral neck BMD a good marker for vertebral 
fracture?

We use ERO (similar to PTE) to illustrate the problem

Regression calibration was used to correct the bias
Regression calibration is to find the distribution of T given the variables 
measured with error
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Effect of Measurement Error
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Effect of Measurement Error on ERO

The 95% CI was calculated by bootstrap methods.

Table. Estimates for ERO

0.041-0.4560.203Improved

0.011-0.1150.052Naïve

95% CI*Point Estimate
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Summary and Discussion

It is important to consider 
measurement error if the magnitude 
of measurement error is large

Use reliability ratio (σx
2 +σu

2 )-1 σx
2

Generally, there is no need to consider 
measurement error if reliability ratio > 
70%

Research is ongoing to incorporate the 
measurement error for PIG



Thank You!

Questions?
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